Lane Change Trajectory Planning Based on Quadratic Programming in Rainy Weather

Author:

Deng Chengzhi1ORCID,Qian Yubin1,Dong Honglei2,Xu Jiejie1,Wang Wanqiu1

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Key Laboratory of Product Defect and Safety for State Market Regulation, Beijing 100101, China

Abstract

To enhance the safety and stability of lane change maneuvers for autonomous vehicles in adverse weather conditions, this paper proposes a quadratic programming−based trajectory planning algorithm for lane changing in rainy weather. Initially, in order to mitigate the risk of potential collisions on wet and slippery road surfaces, we incorporate the concept of road adhesion coefficients and delayed reaction time to refine the establishment of the minimum safety distance. This augmentation establishes constraints on lane change safety distances and delineates the boundaries of viable lane change domains within inclement weather contexts. Subsequently, adopting a hierarchical trajectory planning framework, we incorporate visibility cost functions and safety distance constraints during dynamic programming sampling to ensure the safety of vehicle operation. Furthermore, the vehicle lane change sideslip phenomenon is considered, and the optimal lane change trajectory is obtained based on the quadratic programming algorithm by introducing the maneuverability objective function. In conclusion, to verify the effectiveness of the algorithm, lateral linear quadratic regulator (LQR) and longitudinal double proportional−integral−derivative (DPID) controllers are designed for trajectory tracking. The results demonstrate the algorithm’s capability to produce continuous, stable, and collision−free trajectories. Moreover, the lateral acceleration varies within the range of ±1.5 m/s2, the center of mass lateral deflection angle varies within the range of ±0.15°, and the yaw rate remains within the ±0.1°/s range.

Funder

Central Fundamental Scientific Research Operating Expenses Project

Science and Technology Programme Project of the State Administration for Market Supervision and Administration of China

Applied Research on Vehicle Defect Analysis and Determination Technology Based on the In−depth Investigation of Vehicle Accidents

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3