Extracting Urban Water Bodies from Landsat Imagery Based on mNDWI and HSV Transformation

Author:

Chang LiweiORCID,Cheng Lei,Huang ChangORCID,Qin ShujingORCID,Fu ChenhaoORCID,Li Shiqiong

Abstract

Urban water bodies are critical for sustainable urban ecological and social development. However, the complex compositions of urban land cover and small water bodies pose considerable challenges to urban water surface delineation. Here, we propose a novel urban water extraction algorithm (UWEA) that is efficient in distinguishing water and other low-reflective objects by combining the modified normalized difference water index (mNDWI) and HSV transformation. The spectral properties of urban land covers were analyzed and the separability of objects in different color spaces was compared before applying the HSV transformation. The accuracy and robustness of the UWEA were validated in six highly urbanized subregions of Beijing, Tokyo, and New York, and compared with the mNDWI and HIS methods. The results show that the UWEA had the fewest total errors (sum of omission and commission errors) for all the validation sites, which was approximately 3% fewer errors than those of the mNDWI and 17% fewer errors than those of the HIS method. The UWEA performed best because it was good at identifying small water bodies and suppressing reflective surfaces. The UWEA is effective in urban water monitoring and its thresholds are also robust in various situations. The resulting highly accurate water map could support water-related analyses. This method is also useful for scientists, managers, and planners in water resource management, urban hydrological applications, and sustainable urban development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3