Spatial Patterns of Land Surface Temperature and Their Influencing Factors: A Case Study in Suzhou, China

Author:

Feng Yongjiu,Gao Chen,Tong Xiaohua,Chen Shurui,Lei Zhenkun,Wang Jiafeng

Abstract

Land surface temperature (LST) is a fundamental Earth parameter, on both regional and global scales. We used seven Landsat images to derive LST at Suzhou City, in spring and summer 1996, 2004, and 2016, and examined the spatial factors that influence the LST patterns. Candidate spatial factors include (1) land coverage indices, such as the normalized difference built-up index (NDBI), the normalized difference vegetation index (NDVI), and the normalized difference water index (NDWI), (2) proximity factors such as the distances to the city center, town centers, and major roads, and (3) the LST location. Our results showed that the intensity of the surface urban heat island (SUHI) has continuously increased, over time, and the spatial distribution of SUHI was different between the two seasons. The SUHIs in Suzhou were mainly distributed in the city center, in 1996, but expanded to near suburban, in 2004 and 2016, with a substantial expansion at the highest level of SUHIs. Our buffer-zone-based gradient analysis showed that the LST decays logarithmically, or decreases linearly, with the distance to the Suzhou city center. As inferred by the generalized additive models (GAMs), strong relationships exist between the LST and the candidate factors, where the dominant factor was NDBI, followed by NDWI and NDVI. While the land coverage indices were the LST dominant factors, the spatial proximity and location also substantially influenced the LST and the SUHIs. This work improved our understanding of the SUHIs and their impacts in Suzhou, and should be helpful for policymakers to formulate counter-measures for mitigating SUHI effects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3