Monitoring Spatial-Temporal Variations of Lake Level in Western China Using ICESat-1 and CryoSat-2 Satellite Altimetry

Author:

Chen Jun,Duan ZhengORCID

Abstract

The lakes in the arid or semi-arid regions of western China are more sensitive to climate changes, and lake levels are considered as a direct indicator of regional climate variability. In this study, we combined satellite altimetry data from ICESat-1 with a smaller footprint and higher accuracy (compared to radar altimetry) and CryoSat-2 with a higher resolution in the along-track direction to monitor lake levels in western China and their trends over a long time period from 2003 to 2021. Our satellite altimetry derived lake levels were well-validated by comparing them against in situ measurements for a lake and independent altimetry-derived product from the DAHITI database for the common lakes. Furthermore, the commonly used linear model was applied to our derived lake level time-series to estimate the overall change trends in 67 typical lake levels over western China. Our results showed that 55 (82%) of these lakes displayed an increasing tendency in water levels, and the remaining 12 (18%) lakes showed a decreasing trend. Overall, the mean water level changing rate in western China was +0.15 m/yr (−1.40 to +0.58 m/yr) during the studied time period. The spatial patterns of the lake level variations can be grouped into three subregions: lake level changes between 2003 and 2021 showed general rising lake levels for the central–northern TP (Tibetan Plateau) endorheic region and Xinjiang, but declining levels for the southern TP exorheic region. The seasonal characteristic of lake level changes showed a significant increase during the summer monsoon season, followed by decreases during the non-monsoon season. The precipitation variations play a leading role in the lake level changes in the context of warm and humid climate states. There were good correspondences between the monthly variations in the lake level and monthly mean precipitation. Additionally, the lake levels also showed a relationship with the air temperature change, in particular, the lake level increase showed a small degree of hysteresis behavior compared with the rising temperatures. Geographically, the precipitation increase in the westerlies regions led to widespread lake expansion in the central–northern TP and Xinjiang. Conversely, precipitation decrease in the Indian monsoon regions caused lake shrinkage in the exorheic region of the southern TP. This study helps us achieve a better understanding of the spatial-temporal patterns of lake level changes in the arid or semi-arid region of western China.

Funder

National Natural Science Foundation of China

NSFC and STINT

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference58 articles.

1. Development and validation of a global database of lakes, reservoirs and wetlands;Lehner;J. Hydrol.,2004

2. Large Lakes of China;William;J. Great Lakes Res.,1987

3. Evaluation of the Climatic Change Impacts on the Inland Lake—A Case Study of Lake Qinghai, China;Qin;Resour. Res.,1998

4. Chinese and Mongolian saline lakes: A limnological overview;Williams;Hydrobiologia,1991

5. Effects of a Carbon Dioxide-Induced Climatic Change on Water Supplies in 7 the Western United States;Revelle;Chang. Clim.,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3