Power Equipment Fault Diagnosis Method Based on Energy Spectrogram and Deep Learning

Author:

Liu Yiyang,Li Fei,Guan Qingbo,Zhao Yang,Yan Shuaihua

Abstract

With the development of industrial manufacturing intelligence, the role of rotating machinery in industrial production and life is more and more important. Aiming at the problems of the complex and changeable working environment of rolling bearings and limited computing ability, fault feature information cannot be effectively extracted, and the current deep learning model is difficult to be compatible with lightweight and high efficiency. Therefore, this paper proposes a fault detection method for power equipment based on an energy spectrum diagram and deep learning. Firstly, a novel two-dimensional time-frequency feature representation method and energy spectrum feature map based on wavelet packet transform is proposed, and an energy spectrum feature map dataset is made for subsequent diagnosis. This method can realize multi-resolution analysis, fully extract the feature information contained in the fault signal, and accelerate the convergence of the subsequent diagnosis model. Secondly, a lightweight residual dense convolutional neural network model (LR-DenseNet) is proposed. This model combines the advantages of residual learning and a dense connection, and can not only extract deep features more easily, but can also effectively use shallow features. Then, based on the lightweight residual dense convolutional neural network model, an LR-DenseSENet model is proposed. By introducing the transfer learning strategy and adding the channel domain, an attention mechanism is added to the channel feature fusion layer, with the accuracy of detection up to 99.4%, and the amount of parameter calculation greatly reduced to one-fifth of that of VGG. Finally, through an experimental analysis, it is verified that the fault detection model designed in this paper based on the combination of an energy spectrum feature map and LR-DenseSENet achieves a satisfactory detection effect.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3