A Tightly Coupled LiDAR-Inertial SLAM for Perceptually Degraded Scenes

Author:

Yang LinORCID,Ma Hongwei,Wang Yan,Xia Jing,Wang Chuanwei

Abstract

Realizing robust six degrees of freedom (6DOF) state estimation and high-performance simultaneous localization and mapping (SLAM) for perceptually degraded scenes (such as underground tunnels, corridors, and roadways) is a challenge in robotics. To solve these problems, we propose a SLAM algorithm based on tightly coupled LiDAR-IMU fusion, which consists of two parts: front end iterative Kalman filtering and back end pose graph optimization. Firstly, on the front end, an iterative Kalman filter is established to construct a tightly coupled LiDAR-Inertial Odometry (LIO). The state propagation process for the a priori position and attitude of a robot, which uses predictions and observations, increases the accuracy of the attitude and enhances the system robustness. Second, on the back end, we deploy a keyframe selection strategy to meet the real-time requirements of large-scale scenes. Moreover, loop detection and ground constraints are added to the tightly coupled framework, thereby further improving the overall accuracy of the 6DOF state estimation. Finally, the performance of the algorithm is verified using a public dataset and the dataset we collected. The experimental results show that for perceptually degraded scenes, compared with existing LiDAR-SLAM algorithms, our proposed algorithm grants the robot higher accuracy, real-time performance and robustness, effectively reducing the cumulative error of the system and ensuring the global consistency of the constructed maps.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Estimating uncertain spatial relationships in robotics;Smith,1990

2. Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments;Behley;Robot. Sci. Syst.,2018

3. Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight

4. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3