Two-Dimensional-Simultaneous Localisation and Mapping Study Based on Factor Graph Elimination Optimisation

Author:

Wu Xinzhao,Li PeiqingORCID,Li Qipeng,Li Zhuoran

Abstract

A robust multi-sensor fusion simultaneous localization and mapping (SLAM) algorithm for complex road surfaces is proposed to improve recognition accuracy and reduce system memory occupation, aiming to enhance the computational efficiency of light detection and ranging in complex environments. First, a weighted signed distance function (W-SDF) map-based SLAM method is proposed. It uses a W-SDF map to capture the environment with less accuracy than the raster size but with high localization accuracy. The Levenberg–Marquardt method is used to solve the scan-matching problem in laser SLAM; it effectively alleviates the limitations of the Gaussian–Newton method that may lead to insufficient local accuracy, and reduces localisation errors. Second, ground constraint factors are added to the factor graph, and a multi-sensor fusion localisation algorithm is proposed based on factor graph elimination optimisation. A sliding window is added to the chain factor graph model to retain the historical state information within the window and avoid high-dimensional matrix operations. An elimination algorithm is introduced to transform the factor graph into a Bayesian network to marginalize the historical states and reduce the matrix dimensionality, thereby improving the algorithm localisation accuracy and reducing the memory occupation. Finally, the proposed algorithm is compared and validated with two traditional algorithms based on an unmanned cart. Experiments show that the proposed algorithm reduces memory consumption and improves localisation accuracy compared to the Hector algorithm and Cartographer algorithm, has good performance in terms of accuracy, reliability and computational efficiency in complex pavement environments, and is better utilised in practical environments.

Funder

Zhejiang Lingyan Project

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference41 articles.

1. Progress of CML for mobile robots in unknown environments;Wang;Robot,2004

2. A Comparative Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous Vehicles;Zou;IEEE Trans. Intell. Transp. Syst.,2022

3. Hybrid SLAM-based Exploration of a Mobile Robot for 3D Scenario Reconstruction and Autonomous Navigation;Mac;Acta Polytech. Hung.,2021

4. Gupta, A., and Fernando, X. (2022). Simultaneous Localization and Mapping (SLAM) and Data Fusion in Unmanned Aerial Vehicles: Recent Advances and Challenges. Drones, 6.

5. Building a Mobile AR System based on Visual SLAM;Song;J. Semicond. Disp. Technol.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3