Biochemical Properties of Black and Green Teas and Their Insoluble Residues as Natural Dietary Additives to Optimize In Vitro Rumen Degradability and Fermentation but Reduce Methane in Sheep

Author:

Ramdani DikyORCID,Jayanegara Anuraga,Chaudhry Abdul ShakoorORCID

Abstract

Black (BTL) or green (GTL) tea and their spent tea (STL) leaves can be used as natural dietary additives for ruminants. Experiment 1 used a 3 × 2 × 2 factorial arrangement, with four replicates (n = 4) to test the effects of three different inclusions of tea leaves at 0 (control), 50, and 100 g/kg DM of two different tea types (BTL and GTL) in two different total mixed diets containing either ryegrass hay (RH) or rice straw (RS) on in vitro rumen organic matter degradability (IVOMD), volatile fatty acids (VFA), pH, ammonia (NH3), and methane (CH4) outputs over a 24 h incubation time. Experiment 2 followed a 3 × 2 × 2 factorial arrangement, with eight replicates (n = 8) to study the impacts of three different STL inclusions at 0, 100, and 200 g/kg DM of two different STL types (black and green) into two different total mixed diets containing either RH or RS on the same in vitro measurements. Both types of tea leaves decreased NH3 (p < 0.001) and CH4 (p < 0.01) without affecting (p > 0.05) rumen degradability, but the effect of their STL was less remarkable. Tea leaves and their STL inclusions improved (p < 0.01 and p < 0.001, respectively) the acetate to propionate (A:P) ratio. Compared with BTL, GTL containing diets had higher IVOMD (p < 0.05) and A:P ratio (p < 0.05) but lower NH3 (p < 0.001). Reduced rumen NH3 and CH4 outputs can be useful for protein and energy use efficiency while an increased A:P ratio might lead to increased milk fat synthesis and reduced low-fat milk syndrome. The surplus or wasted tea leaf products could be used as sustainable sources of nutrients to optimize rumen function and minimize environmental impacts of feeding ruminant animals.

Funder

Directorate General of Higher Education, Indonesian Ministry of Education, Culture, Research and Technology

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3