Distributed Kernel Extreme Learning Machines for Aircraft Engine Failure Diagnostics

Author:

Lu JunjieORCID,Huang Jinquan,Lu FengORCID

Abstract

Kernel extreme learning machine (KELM) has been widely studied in the field of aircraft engine fault diagnostics due to its easy implementation. However, because its computational complexity is proportional to the training sample size, its application in time-sensitive scenarios is limited. Therefore, in the case of largescale samples, the original KELM is difficult to meet the real-time requirements of aircraft engine onboard condition. To address this shortcoming, a novel distributed kernel extreme learning machines (DKELMs) algorithm is proposed in this paper. The distributed subnetwork is adopted to reduce the computational complexity, and then the likelihood probability and Dempster-Shafer (DS) evidence theory is used to design the fusion scheme to ensure the accuracy after fusion is not reduced. Afterwards, the verification on the benchmark datasets shows that the algorithm can greatly reduce the computational complexity and improve the real-time performance of the original KELM algorithm without sacrificing the accuracy of the model. Finally, the performance estimation and fault pattern recognition experiments of an aircraft engine show that, compared with the original KELM algorithm and support vector machine (SVM) algorithm, the proposed algorithm has the best performance considering both real-time capability and model accuracy.

Funder

National Natural Science Foundation of China

Funding for Outstanding Doctoral Dissertation in NUAA

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3