Renormalization Analysis of Topic Models

Author:

Koltcov SergeiORCID,Ignatenko VeraORCID

Abstract

In practice, to build a machine learning model of big data, one needs to tune model parameters. The process of parameter tuning involves extremely time-consuming and computationally expensive grid search. However, the theory of statistical physics provides techniques allowing us to optimize this process. The paper shows that a function of the output of topic modeling demonstrates self-similar behavior under variation of the number of clusters. Such behavior allows using a renormalization technique. A combination of renormalization procedure with the Renyi entropy approach allows for quick searching of the optimal number of topics. In this paper, the renormalization procedure is developed for the probabilistic Latent Semantic Analysis (pLSA), and the Latent Dirichlet Allocation model with variational Expectation–Maximization algorithm (VLDA) and the Latent Dirichlet Allocation model with granulated Gibbs sampling procedure (GLDA). The experiments were conducted on two test datasets with a known number of topics in two different languages and on one unlabeled test dataset with an unknown number of topics. The paper shows that the renormalization procedure allows for finding an approximation of the optimal number of topics at least 30 times faster than the grid search without significant loss of quality.

Funder

National Research University Higher School of Economics

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference47 articles.

1. Navigating the local modes of big data: The case of topic models;Roberts,2016

2. Probabilistic topic decomposition of an eighteenth-century American newspaper

3. Applications of Topic Models

4. Macroanalysis: Digital Methods and Literary History;Jockers,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3