A Latent Topic Analysis and Visualization Framework for Category-Level Target Promotion in the Supermarket

Author:

Sun YiORCID,Hayashi TeruakiORCID,Ohsawa YukioORCID

Abstract

AbstractDeciding when and which products to recommend to whom is always an essential issue for retailers. In this study, we propose a mixed framework with two components to capture customer buying behavior and its changes over time and visualize these results to better help retailers choose and target products strategically for marketing. In this framework, a topic model is first used to extract customer’s purchase behavior instead of association rules or K-means as mainly used in market field. To automatically choose the optimal number of topics, we implement an approach proposed by Koltcov et al. on point-of-sale (POS) data in the supermarket. Meanwhile, to grasp the change of topics over time, we divided monthly POS data in half and applied the topic model with Renyi entropy separately. The results suggest that splitting data might be a better way to understand customer behavior. Second, we consider how to develop an effective way to visualize the results of the topic model, which is essential, because in a supermarket context, simply knowing which product categories are included under which topics is not enough to support how a supermarket promotes their products. To address this, we design a three-layer visualization approach to better interpret the topic model results and to help retailers design target promotion strategies. The design of visualization was overlooked by studies related to the use of topic models on supermarket data. Finally, to demonstrate the usefulness of our proposed framework, we conduct a simple scenario-based analysis between our framework and other models, such as Latent Dirichlet Allocation (LDA) and the Dynamic Topic Model (DTM). The results show that for most periods, our proposed framework outperforms LDA and DTM.

Funder

Japan Society for the Promotion of Science

United Supermarket Holdings Co. Ltd

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3