Abstract
Preoperative prediction of visual recovery after pituitary adenoma surgery remains a challenge. We aimed to investigate the value of MRI-based radiomics of the optic chiasm in predicting postoperative visual field outcome using machine learning technology. A total of 131 pituitary adenoma patients were retrospectively enrolled and divided into the recovery group (N = 79) and the non-recovery group (N = 52) according to visual field outcome following surgical chiasmal decompression. Radiomic features were extracted from the optic chiasm on preoperative coronal T2-weighted imaging. Least absolute shrinkage and selection operator regression were first used to select optimal features. Then, three machine learning algorithms were employed to develop radiomic models to predict visual recovery, including support vector machine (SVM), random forest and linear discriminant analysis. The prognostic performances of models were evaluated via five-fold cross-validation. The results showed that radiomic models using different machine learning algorithms all achieved area under the curve (AUC) over 0.750. The SVM-based model represented the best predictive performance for visual field recovery, with the highest AUC of 0.824. In conclusion, machine learning-based radiomics of the optic chiasm on routine MR imaging could potentially serve as a novel approach to preoperatively predict visual recovery and allow personalized counseling for individual pituitary adenoma patients.
Funder
1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献