Machine Learning-Based Radiomics of the Optic Chiasm Predict Visual Outcome Following Pituitary Adenoma Surgery

Author:

Zhang Yang,Chen ChaoyueORCID,Huang Wei,Cheng Yangfan,Teng Yuen,Zhang Lei,Xu JianguoORCID

Abstract

Preoperative prediction of visual recovery after pituitary adenoma surgery remains a challenge. We aimed to investigate the value of MRI-based radiomics of the optic chiasm in predicting postoperative visual field outcome using machine learning technology. A total of 131 pituitary adenoma patients were retrospectively enrolled and divided into the recovery group (N = 79) and the non-recovery group (N = 52) according to visual field outcome following surgical chiasmal decompression. Radiomic features were extracted from the optic chiasm on preoperative coronal T2-weighted imaging. Least absolute shrinkage and selection operator regression were first used to select optimal features. Then, three machine learning algorithms were employed to develop radiomic models to predict visual recovery, including support vector machine (SVM), random forest and linear discriminant analysis. The prognostic performances of models were evaluated via five-fold cross-validation. The results showed that radiomic models using different machine learning algorithms all achieved area under the curve (AUC) over 0.750. The SVM-based model represented the best predictive performance for visual field recovery, with the highest AUC of 0.824. In conclusion, machine learning-based radiomics of the optic chiasm on routine MR imaging could potentially serve as a novel approach to preoperatively predict visual recovery and allow personalized counseling for individual pituitary adenoma patients.

Funder

1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3