Machine Learning Models to Forecast Outcomes of Pituitary Surgery: A Systematic Review in Quality of Reporting and Current Evidence

Author:

Rech Matheus M.12ORCID,de Macedo Filho Leonardo23ORCID,White Alexandra J.4,Perez-Vega Carlos2,Samson Susan L.2ORCID,Chaichana Kaisorn L.2,Olomu Osarenoma U.2,Quinones-Hinojosa Alfredo2,Almeida Joao Paulo2ORCID

Affiliation:

1. Department of Neurosurgery, University of Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil

2. Department of Neurosurgery, Mayo Clinic Florida, Jacksonville, FL 32224, USA

3. Department of Neurosurgery, Penn State Health, Hershey, PA 17033, USA

4. Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA

Abstract

Background: The complex nature and heterogeneity involving pituitary surgery results have increased interest in machine learning (ML) applications for prediction of outcomes over the last decade. This study aims to systematically review the characteristics of ML models involving pituitary surgery outcome prediction and assess their reporting quality. Methods: We searched the PubMed, Scopus, and Web of Knowledge databases for publications on the use of ML to predict pituitary surgery outcomes. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) to assess report quality. Our search strategy was based on the terms “artificial intelligence”, “machine learning”, and “pituitary”. Results: 20 studies were included in this review. The principal models reported in each article were post-surgical endocrine outcomes (n = 10), tumor management (n = 3), and intra- and postoperative complications (n = 7). Overall, the included studies adhered to a median of 65% (IQR = 60–72%) of TRIPOD criteria, ranging from 43% to 83%. The median reported AUC was 0.84 (IQR = 0.80–0.91). The most popular algorithms were support vector machine (n = 5) and random forest (n = 5). Only two studies reported external validation and adherence to any reporting guideline. Calibration methods were not reported in 15 studies. No model achieved the phase of actual clinical applicability. Conclusion: Applications of ML in the prediction of pituitary outcomes are still nascent, as evidenced by the lack of any model validated for clinical practice. Although studies have demonstrated promising results, greater transparency in model development and reporting is needed to enable their use in clinical practice. Further adherence to reporting guidelines can help increase AI’s real-world utility and improve clinical practice.

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3