An Experimental Study on the Efficacy of Local Exhaust Systems for the Mitigation of Exhaled Contaminants in a Meeting Room

Author:

Ejaz Muhammad Farhan1,Kilpeläinen Simo1ORCID,Mustakallio Panu12ORCID,Zhao Weixin1ORCID,Kosonen Risto13ORCID

Affiliation:

1. Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland

2. Halton Oy, 00520 Helsinki, Finland

3. College of Urban Construction, Nanjing Tech University, Nanjing 210037, China

Abstract

In industrial applications, local exhaust systems have been used extensively for capturing and confining contaminants at their source. The present study investigates the efficacy of these systems in mitigating the spread of exhaled pollutants by combining them with mixing and displacement ventilation. Experiments were conducted in a simulated meeting room with six closely situated workstations, featuring five exposed persons (simulated with heated dummies) and one infected person (simulated with a breathing manikin). Six overhead local exhaust units, merged with panels, corresponding to workstations, were installed using a lowered false ceiling. Additionally, a table plenum setting for air inlets was introduced to enhance displacement ventilation effectiveness along with local exhaust systems. Results from 16 experimental cases are presented, using the local air quality index and ventilation effectiveness in the breathing zone. The local exhaust system improved the local air quality at the measuring locations closest to the infector in almost all test scenarios. The improvement, particularly significant with displacement ventilation, marked a maximum 35% increase in the local air quality index adjacent to the infector and 25% in the entire breathing zone of the tested meeting room. Moreover, the table plenum settings, coupled with displacement ventilation, further enhanced conditions in the breathing zone. Under the specific conditions of this investigation, the number of operational local exhausts had a marginal impact on mixing ventilation but a significant one on displacement ventilation tests. The efficacy of local exhaust systems was also influenced by the levels of heat gains present in the room. Overall, the study aims to contribute to ongoing efforts to identify sustainable solutions to mitigate indoor airborne diseases with a combination of supply and local exhaust units.

Funder

Higher Education Commission

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3