Mechanical Properties of PVC Fiber-Reinforced Concrete—Effects of Fiber Content and Length

Author:

Islam Tarikul1ORCID,Safiuddin Md.2ORCID,Roman Rezwan Ahmed1,Chakma Bodhijit1,Al Maroof Abdullah1

Affiliation:

1. Department of Civil Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh

2. Angelo DelZotto School of Construction Management, George Brown College, Toronto, ON M5R1M3, Canada

Abstract

This paper presents the key mechanical properties of PVC fiber-reinforced concrete. Six concrete mixtures were produced using plastic fibers obtained from clear PVC sheets. Three concrete mixtures were made using 20 mm long PVC fibers, whereas the other three were prepared with 40 mm long PVC fibers. The fiber content was varied in the range of 0–1.5 wt.% of cement for each length of fiber. The fresh concrete mixtures were tested for workability in terms of the slump. The hardened concretes were tested for their compressive and splitting tensile strengths, flexural strength and toughness, static elastic modulus, and impact resistance and toughness. The effects of the fiber content and fiber length on the workability and above-mentioned mechanical properties were observed. In addition, the correlations between various mechanical properties were sought. The test results revealed that the workability of concrete was reduced for both fiber lengths as the fiber content increased. The compressive strength, flexural strength and toughness, elastic modulus, and impact resistance and toughness increased at up to 1 wt.% fiber content, then decreased for 1.5 wt.% fibers. A similar trend was also noticed for the splitting tensile strength, particularly in the case of 20 mm long PVC fibers. Compared to the fiber length, the fiber content exhibited a more pronounced effect on the mechanical properties of concrete. The optimum fiber content was 1 wt.%, which produced the best performance in this study. Furthermore, excellent correlations were observed for the tested mechanical properties of concrete, except for splitting tensile strength, which was not well-correlated with compressive strength.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3