Acid Activation in Low-Carbon Binders: A Systematic Literature Review

Author:

Park Janaina Aguiar1ORCID,Pimenta Marcio Mateus2,Bezerra Augusto Cesar da Silva2ORCID

Affiliation:

1. Federal Institute of Education Science and Technology of Minas Gerais (IFMG), Santa Luzia Campus, Santa Luzia 33115-390, Brazil

2. Department of Transport Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte 30421-169, Brazil

Abstract

Geopolymers have emerged as an alternative binding material to Ordinary Portland Cement (OPC). Recently, there has been an increase in studies exploring the synthesis of these materials using acid activation rather than traditional alkaline activation. This approach offers benefits such as good strength at an early age, better thermal properties, and a chemical activator that emits less carbon to be produced. In addition, it provides resistance to efflorescence and leaching, which are common challenges associated with alkali-activated products. This work analyzed the scientific advances in acid activation in synthesizing an alternative binder to OPC. To this end, a systematic review of the last five years of scientific literature was carried out using the Systematic Review for Engineering and Experiments (SREE) method. The results show a notable increase in research focused on acid activation over the last few years. The acid activators were always phosphate solutions, mainly phosphoric acid. Metakaolin was the most tested precursor, followed by fly ash, and volcanic ash. The research requires improvements in the methodological quality, providing data on molar ratios (Al/P, Si/Al, and Si/P), Liquid/Solid mass ratio, activator solution molarity, and curing process, in addition to statistical treatment and comparison of results. There exists a paucity of diversity in the examined precursors, activators, and additives. Future research developments need to clarify the behavior of mechanical resistance over time, better curing process, water resistance, durability, and the role of iron, magnesium, and calcium silicates and/or oxides. The paper identifies the main research gaps in the area and functions as a database, guiding researchers in selecting raw materials, dosing methodology, and curing processes.

Funder

Minas Gerais State Research Foundation

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3