High-Cycle Fatigue Crack Growth in T-Shaped Tubular Joints Based on Extended Finite Element Method

Author:

Lv Wenbin1,Ding Beidou23,Zhang Kunpeng1,Qin Tianqi2

Affiliation:

1. Shanghai Road and Bridge (Group) Company Limited, Shanghai 201804, China

2. Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, Xuzhou 221116, China

3. Jiangsu Collaborative Innovation Center for Building Energy-Saving and Construction Technology, Xuzhou 221116, China

Abstract

High fatigue load, which exists widely in steel building structures, likely leads to brittle failure at the joints, supports, and so on. This can lead to the partial or total damage of the structure and even to cause the collapse of the whole structure. This article aims to provide a method to simulate high-cycle crack propagation in tubular joints, which is one of the most common types occurring in steel structures. Firstly, sixteen T-shaped tubular joint models under different load conditions and initial crack dimensions were built through the coordinate mapping method. Secondly, based on the extended finite element method (XFEM), an algorithm was developed by combining the secondary development in Abaqus and a quasistatic simulation method to simulate high-cycle crack growth in tubular joints under a constant amplitude. The results of the simulations were compared with experimental data. The study found that the surface stress calculated from the tubular joint models using the coordinate mapping method was close to the experimental data. Through the comparison of the crack propagation rate and the crack growth process between the simulation and experiment results, the simulation method was validated. When a crack penetrated the tube wall, the difference in the load cycles between the simulations and the experiment was 9.5%. The initial crack dimension had an impact on the crack propagation, with the decrease in the a/c and KII generally becoming the dominant factor with respect to the crack growth, while the fatigue life of the joints tended to increase.

Funder

Fundamental Research Funds for the Central Universities

Jiangsu Collaborative Innovation Center for Building Energy-Saving and Construction Technology Development Fund Program

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3