A New Framework for Isolating Sensor Failures and Structural Damage in Noisy Environments Based on Stacked Gated Recurrent Unit Neural Networks

Author:

Liu BoORCID,Xu Qiang,Chen Jianyun,Li Jing,Wang Mingming

Abstract

To address the problem of sensor faults and measurement noise being misinterpreted as structural damage in structural health monitoring (SHM), this paper proposes a new framework for distinguishing sensor faults and structural damage based on stacked gated recurrent neural networks (S-GRU NN) that considers measurement noise. In this framework, the sensor signal reconstruction model was constructed by learning and training the S-GRU NN. The sensor fault threshold was determined based on a statistical analysis of the response reconstruction error between the true and reconstruction values. The sensor fault and structural damage are then distinguished by the fact that the sensor fault is independent and the structural damage is global. The framework is compared with other isolation frameworks based on traditional deep learning models through numerical simulations of a three-span continuous beam and laboratory steel frame experiments. The results show that the S-GRU NN has better reconstruction effect and isolation performance of sensor faults and structural damage in noisy environment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3