Shear Behavior of FRP Connectors in Precast Sandwich Insulation Wall Panels

Author:

Chen Dong,Li Kuaikuai,Yuan Zhiyang,Cheng BaoquanORCID,Kang Xing

Abstract

Glass fiber reinforced polymer (FRP) composite connectors used in precast sandwich insulation wall panels directly affect the safety of the wall. In practical applications, a precast concrete sandwich insulation wall panel is transported to the construction site for hoisting 3–5 days after steam curing, and its concrete strength typically reaches approximately 70% of the design strength (i.e., the concrete strength after natural curing for 14 days). This study investigated the natural curing of concrete for 14 days and analyzed the mechanical properties of FRP connectors with two different sections in terms of their failure mode, failure process, and load–displacement curves. Numerical analysis and finite element parametric analysis of the connectors were conducted based on experimental data. The average ultimate shear capacity of a single rectangular-section connector was 8.37 kN and that of the cross-section connector was 8.37 kN. The connectors exhibited a good shear resistance, and the rectangular-section connectors had better ductility than the cross-section connectors. The wall panel exhibited three types of failure modes: splicing failure of the fiber layer of the connector, fiber fracture in the anchorage of the connector, failure of the concrete of the anchorage, and mainly material damage of the connector itself. The error between the load simulation value and test value of a single connector was less than 10% of the numerical simulation error requirement, and the finite element simulation results were reliable. The results of the parametric simulation of the shear capacity showed that the distance between connectors, anchorage depth, and insulation layer thickness had a significant influence on the shear performance of concrete connectors.

Funder

Mechanical Properties Research of FRP Connectors in Fabricated Concrete Sandwich In-sulation Wall Panels after Fire

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3