New Anticracking Glass-Fiber-Reinforced Cement Material and Integrated Composite Technology with Lightweight Concrete Panels

Author:

Chen Dong1,Deng Junjie1,Cheng Baoquan2ORCID,Wang Qiong3,Zhao Baojun3

Affiliation:

1. BIM Engineering Center of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, China

2. School of Civil Engineering, Central South University, Changsha, Hunan 410083, China

3. Shenzhen Hailong Construction Technology Company Limited, Shenzhen, Guangdong 518000, China

Abstract

Glass-fiber-reinforced cement (GRC) is a widely used decorative material for wall facades. Conventional GRC products have poor crack resistance, low construction efficiency, poor integration, and few environmental benefits, hence failing to meet the requirements of building industrialization. To realize an integrated composite wall made from GRC and precast lightweight concrete (PLC) with a lasting anticrack effect, the anticracking properties of GRC material as well as the connection mode of GRC and PLC layers were studied. Through long-term shrinkage test, the influence of fiber content, rubber powder content, and expansion agent content on the crack resistance of GRC material was systematically analyzed. At the same time, the influence of connection mode on the crack resistance of the GRC layer after compositing with precast lightweight concrete (PLC) was analyzed. The results showed that adding fiber can effectively improve the flexural strength of the GRC and reduce drying shrinkage, whereas adding rubber powder can effectively improve its toughness and crack resistance. The addition of U-type expansion agent (UEA) can impart the cement mortar with a certain degree of microexpansion performance and help improve the drying shrinkage of the GRC. Compared with other compounding methods, the smooth connection of the GRC and PLC can effectively reduce the shrinkage of the GRC surface layer and improve its crack resistance. So, the new GRC material has good crack resistance performance and facade effect. These research studies provide an experimental basis for the large-scale application of the panel, and it has great advantages in improving the efficiency of prefabricated building construction.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3