Transfer Matrix Method for Calculating the Transverse Load Distribution of Articulated Slab Bridges

Author:

Guo KaiqiangORCID,Liu ZhaoORCID,Bairán Jesús-MiguelORCID

Abstract

Articulated slab bridges have been widely used by transportation administration for short-to-medium span bridges because of their good economy, convenient construction, and environmental advantages, while the presence of shear keys increases the complexity of structural behavior. Developing more reasonable analysis approaches of quick assessment, pre-design, and hand calculations for the articulated slab bridges is a challenge because of the peculiar shear key mechanism. This paper is devoted to presenting a recursive algorithm, based on the force equilibrium conditions of each individual slab, thus resulting in simultaneous equations of the transfer matrix method (TMM). In this procedure, the state vector is an array composed of vertical displacement, shear force, unit constant; and the transfer matrix contains the bending and torsional stiffness parameters of simply supported slabs. Then, the influence line of transverse load distribution (TLD) is calculated for each slab by introducing boundary conditions. To validate and verify the efficiency of the TMM algorithm, a transversely prefabricated void slab bridge with a span of 20 m is considered as a case study. The traditional force (FM) and finite element (FEM) methods are used for comparison and validation. It is demonstrated that the TMM can provide good results with higher algorithm efficiency by exempting the modeling tasks in FM and FEM and capture variations in TLD along the bridge’s span. In addition, the influence of the span length and relative stiffness coefficient of slabs on the TLD of articulated slab bridges are analyzed from the parametric analysis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference29 articles.

1. Shear Key Performance in Multibeam Box Girder Bridges;Huckelbridge;J. Perform. Constr. Facil.,1995

2. Longitudinal Joint Performance of a Concrete Hollow Core Slab Bridge;Barbieri;Transp. Res. Rec.,2018

3. Longitudinal box-beam bridge joints under monotonic and cyclic loads;Shi;Eng. Struct.,2020

4. Load distribution factor for moment of composite bridges with multi-box girders;Kong;Eng. Struct.,2020

5. AASHTO (2020). AASHTO LRFD Bridge Design Specification, American Association of State Highway and Transportation Officials. [9th ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3