Effects of Floor System on Progressive Collapse Behavior of RC Frame Sub-Assemblages

Author:

Elkholy SaidORCID,Shehada Ahmad,El-Ariss BilalORCID

Abstract

The ability to predict the resistance of reinforced concrete (RC) structures to progressive collapse as a result of an interior column removal has become a need in structural design. In general, three resistance mechanisms characterize the structure resistance to progressive collapse, flexural action, compressive arch action, and tension catenary action. The objective of this study is to investigate the effects of floor system configurations on the progressive collapse-resistance of RC frame sub-assemblages and the amount of energy dissipated in each resistance mechanism. This investigation employs a fiber element-based modeling technique to present findings into the effects of beam size and reinforcement details on the progressive collapse-resistance and energy dissipation of RC beam-column sub-assemblages with four equal spans. Three different span lengths of 5, 6, and 7 m were considered. A total of 38 floor system designs for gravity loads were performed in accordance with the ACI 318-14 design code. The modeling technique employed in this study was validated and utilized by the authors in previously published works. The study shows that beam size and the presence of slab are critical as they significantly affect the energy dissipation and progressive collapse-resistance and failure pattern of the sub-assemblage frames. Moreover, the presence of a slab was found to increase the energy dissipation by around 28%.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3