A review of progressive collapse research and regulations

Author:

Byfield Michael1,Mudalige Wjesundara1,Morison Colin2,Stoddart Euan1

Affiliation:

1. School of Civil Engineering and the Environment, University of Southampton, UK

2. Security and Explosion Effects Division, TPS Consult, Croydon, UK

Abstract

History has demonstrated that buildings designed to conventional design codes can lack the robustness necessary to withstand localised damage, partial or even complete collapse. This variable performance has led governmental organisations to seek ways of ensuring all buildings of significant size possess a minimum level of robustness. The research community has responded by advancing understanding of how structures behave when subjected to localised damage. Regulations and design recommendations have been developed to help ensure more consistent resilience in all framed buildings of significant size, and rigorous design approaches have been specified for buildings deemed potentially vulnerable to extreme loading events. This paper summarises some of the more important progressive collapse events, to identify key attributes that lead to vulnerability to collapse. Current procedures and guidelines for ensuring a minimum level of performance are reviewed and modelling methods for structures subjected to localised damage are described. These include increasingly sophisticated progressive collapse analysis procedures, including linear static and non-linear static analysis, as well as non-linear static pushover and linear dynamic methods. Finally, fully non-linear dynamic methods are considered. Building connections potentially represent the most vulnerable structural elements in steel-framed buildings; their failure can lead to progressive collapses. Steel connections also present difficulties with respect to frame modelling and this paper highlights benefits and drawbacks of some modelling procedures with respect to their treatment of connections.

Publisher

Thomas Telford Ltd.

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3