Experimental Study and Numerical Simulation for the Seismic Performance of an Innovative Connection between a Flat CFST Column and an H Beam

Author:

Deng En-Feng,Wang Yu-Han,Liu ZheORCID,Song Yong-Ji,Wang Zhen,Cao Dian-Bin

Abstract

A concrete-filled steel tube (CFST) column permits convenient and fast construction, and its use for high-rise buildings is increasing. Meanwhile, the CFST structure has great potential for use in residence buildings, owing to its smooth evaluation. A connection for a flat CFST column has also attracted increasing attention from scholars. An innovative connection between a flat CFST column and an H beam was proposed and cyclically tested in this paper. The flat CFST column, with a width that is equal to the thickness of the partition wall, was adopted to avoid the protrusion of the column into the corner of the room. The configuration of the innovative connection was introduced, and three full-scale specimens, considering different relative positions of the beam and column, were tested under cyclic load to failure. The seismic performance, including the failure mode, ductility, etc., were revealed and evaluated. It was indicated that the plastic hinge of the connection was prominently removed outward, due to the reinforced short beam and the interior-diaphragm, verifying the reliability of the innovative connection. Furthermore, an elaborated finite element model was developed, and the results of the finite element simulation were compared with the experimental simulations. This comparison confirmed the reasonability of the developed finite element model.

Funder

Key Research and Promotion Project (Scientific and Technological Project) of Henan Province, China

Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3