Flexural Strength Evaluation of Multi-Cell Composite L-Shaped Concrete-Filled Steel Tubular Beams

Author:

Shen YanfeiORCID,Tu Yongqing,Huang Wei

Abstract

Concrete-filled steel tubular (CFST) members have been widely used in industrial structures and high-rise residential buildings. The multi-cell composite L-shaped concrete-filled steel tubular (ML-CFST) cross-section, as an innovative, special-shaped structural arrangement, may solve the issue of normal CFST members protruding from walls and result in more usable interior space. Currently, no design rules are available for the application of ML-CFST members. One of the primary objectives of the present study is to develop recommendations in line with the unified theory to evaluate the bending moment resistance of ML-CFST beams. According to the unified theory, the bending moment resistance of an ML-CFST beam is related to the compressive strength (fsc) and the flexural strength index (γm) of a composite section, in which the accuracy of γm and fsc are affected by a confinement effect factor (ξ). Nevertheless, the original expression of ξ is not suitable for ML-CFST sections, since the appreciable effect of the irregular shape on confinement is neglected. Considering the cross-sectional geometry and boundary conditions of the cells, an equivalent shape factor to modify the confinement effect was proposed in this study through dividing the infill concrete into highly confined areas and less confined areas. An adequate formula to calculate the fsc and an approximate expression of γm for the ML-CFST sections was then developed. Furthermore, four-point bending tests on eight specimens were carried out to investigate the flexural performance of the ML-CFST beams. Lastly, the proposed formulas were assessed against experimental and numerical results. The comparisons show that the proposed unified theory-based approach produced accurate and generally conservative results for the ML-CFST beams studied.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3