A Systematic Approach to Optimizing Energy-Efficient Automated Systems with Learning Models for Thermal Comfort Control in Indoor Spaces

Author:

Erişen Serdar1ORCID

Affiliation:

1. Department of Architecture, Atılım University, Ankara 06830, Turkey

Abstract

Energy-efficient automated systems for thermal comfort control in buildings is an emerging research area that has the potential to be considered through a combination of smart solutions. This research aims to explore and optimize energy-efficient automated systems with regard to thermal comfort parameters, energy use, workloads, and their operation for thermal comfort control in indoor spaces. In this research, a systematic approach is deployed, and building information modeling (BIM) software and energy optimization algorithms are applied at first to thermal comfort parameters, such as natural ventilation, to derive the contextual information and compute the building performance of an indoor environment with Internet of Things (IoT) technologies installed. The open-source dataset from the experiment environment is also applied in training and testing unique black box models, which are examined through the users’ voting data acquired via the personal comfort systems (PCS), thus revealing the significance of Fanger’s approach and the relationship between people and their surroundings in developing the learning models. The contextual information obtained via BIM simulations, the IoT-based data, and the building performance evaluations indicated the critical levels of energy use and the capacities of the thermal comfort control systems. Machine learning models were found to be significant in optimizing the operation of the automated systems, and deep learning models were momentous in understanding and predicting user activities and thermal comfort levels for well-being; this can optimize energy use in smart buildings.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3