A Review of Recent Literature on Systems and Methods for the Control of Thermal Comfort in Buildings

Author:

Grassi BenedettaORCID,Piana Edoardo AlessioORCID,Lezzi Adriano MariaORCID,Pilotelli MariagraziaORCID

Abstract

Thermal comfort in indoor environments is perceived as an important factor for the well-being and productivity of the occupants. To practically create a comfortable environment, a combination of models, systems, and procedures must be applied. This systematic review collects recent studies proposing complete thermal-comfort-based control strategies, extracted from a scientific database for the period 2017–2021. The study consists of this paper and of a spreadsheet recording all the 166 reviewed works. After a general introduction, the content of the papers is analyzed in terms of thermal comfort models, indoor environment control strategies, and correlation between these two aspects. Practical considerations on scope, required inputs, level of readiness, and, where available, estimated cost are also given. It was found that the predicted mean vote is the preferred thermal comfort modeling approach, followed by data-driven and adaptive methods. Thermal comfort is controlled mainly through indoor temperature, although a wide range of options are explored, including the comfort-based design of building elements. The most popular field of application of advanced control strategies is office/commercial buildings with air conditioning systems, which can be explained by budget and impact considerations. The analysis showed that few works envisaging practical implementations exist that address the needs of vulnerable people. A section is, therefore, dedicated to this issue.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference183 articles.

1. Literature survey on how different factors influence human comfort in indoor environments

2. Thermal Comfort: Analysis and Applications in Environmental Engineering;Fanger,1970

3. Developing an adaptive model of thermal comfort and preference;de Dear,1998

4. Standard 55: Thermal Environmental Conditions for Human Occupancy,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3