Crack Detection in Bearing Plate of Prestressed Anchorage Using Electromechanical Impedance Technique: A Numerical Investigation

Author:

Le Ba-Tung12ORCID,Nguyen Thanh-Truong23ORCID,Truong Tran-De-Nhat12ORCID,Nguyen Chi-Thien12,Phan Thi Tuong Vy4ORCID,Ho Duc-Duy12ORCID,Huynh Thanh-Canh45ORCID

Affiliation:

1. Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam

2. Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam

3. Industrial Maintenance Training Center, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam

4. Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam

5. Faculty of Civil Engineering, Duy Tan University, Danang 550000, Vietnam

Abstract

The bearing plate is an important part of a tendon–anchorage subsystem; however, its function and safety can be compromised by factors such as fatigue and corrosion. This paper explores the feasibility of the electromechanical impedance (EMI) technique for fatigue crack detection in the bearing plate of a prestressed anchorage. Firstly, the theory of the EMI technique is presented. Next, a well-established prestressed anchorage in the literature is selected as the target structure. Thirdly, a 3D finite element model of the PZT transducer–target anchorage subsystem is simulated, consisting of a concrete segment, a steel anchor head, and a steel bearing plate instrumented with a PZT transducer. The prestress load is applied to the anchorage via the anchor head. The EMI response of the target structure is numerically obtained under different simulated fatigue cracks in the bearing plate using the linear impedance analysis in the frequency domain. Finally, the resulting EMI response was quantified using two damage metrics: root-mean-square deviation and correlation coefficient deviation. These metrics are then compared with a threshold to identify the presence of cracks in the bearing plate. The results show that the simulated cracks in the bearing plate are successfully detected by tracking the shifts in the damage metrics. The numerical investigation demonstrates the potential of the EMI technique as a non-destructive testing method for assessing the structural integrity of prestressed structures.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3