Structural Health Monitoring of Fiber-Reinforced Concrete Prisms with Polyolefin Macro-Fibers Using a Piezoelectric Materials Network under Various Load-Induced Stress

Author:

Naoum Maria C.1ORCID,Papadopoulos Nikos A.1,Voutetaki Maristella E.2ORCID,Chalioris Constantin E.1ORCID

Affiliation:

1. Laboratory of Reinforced Concrete and Seismic Design of Structures, Structural Engineering Science Division, Civil Engineering Department, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

2. Structural Science and Technology Division, Architectural Engineering Department, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

Abstract

This experimental study investigates the influence of synthetic macro-fibers added in fiber-reinforced concrete (FRC) prismatic specimens on their flexural response and overall cracking performance. Application of a novel structural health monitoring (SHM) system that implements the electromechanical impedance (EMI) technique and the use of piezoelectric lead zirconate titanate (PZT) transducers installed in the FRC prisms are also included. The applied PZT-enabled EMI-based monitoring system was developed to diagnose damage and the overall performance in reinforced concrete (RC) structural members subjected to cyclic repeated loading, simulating seismic excitations in existing RC buildings. The paper also aims to determine the sensitivity of the real-time, wireless, and portable monitoring technique corresponding to the location, the distance, the direction of polarization of the PZT transducers and the location and magnitude of damage due to flexural cracking. Further, the influence of the effect of stresses corresponding at various loading levels and the observed changes in the ΕΜΙ frequency response of the PZT transducers are also examined. Test results indicated that cracking detection is achieved using this SHM system by prompt damage level assessment due to the FRC’s flexural load at early seismic loading stages in existing RC buildings.

Funder

project “Risk and Resilience Assessment Center, Prefecture of East Macedonia and Thrace, Greece”

Operational Programme “Competitiveness, Entrepreneurship and Innovation”

Greece and the European Union

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3