Abstract
Based on a previously designed variable-stiffness load transfer component (LTC), a novel dispersed-tendon cable anchor system (CAS) was developed to increase the anchoring efficiency of large-diameter basalt-fiber-reinforced polymer (BFRP) cables. The static behaviors of the CAS are then numerically evaluated by a simplified three-dimensional finite-element (FE) model and implemented in a full-scale BFRP cable. The FE results indicated that the accuracy of the simplified dispersed-tendon model could be effectively ensured by dividing the revised compensation factor. The anchor behavior of the dispersed-tendon CAS was superior to that of the parallel-tendon CAS when the same cable was applied. The radial stress and tensile stress difference can be reduced by decreasing the tendon spacing. The testing and simulated results agreed well with the load–displacement relationship and axial displacement. All tendons fractured in the testing section, and the LTC suffered minimal damage. The ultimate force of the cable with 127 4-mm-diameter tendons was 2419 kN, and the corresponding anchoring efficiency was 93%. The cable axial tensile strain in the anchoring zone decreased linearly from the loading end to the free end. The cable shear stress concentration at the loading end can be avoided by employing a variable-stiffness anchoring method.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
China Postdoctoral Science Foundation
Excellent Postdoctoral Program of Jiangsu Province
National Key Research and Development Program of China
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献