Nonlinear Coupled Vibration Behavior of BFRP Cables on Long-Span Cable-Stayed Bridges under Parametric Excitation

Author:

Yang Yaqiang1,Zhou Zixian1,Guan Yanlin1,Shi Jianzhe2,Zhan Qiwei1ORCID,Fahmy Mohamed F. M.3,Wu Bitao4ORCID

Affiliation:

1. School of Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China

3. Department of Civil Engineering, Faculty of Engineering, Assiut University, Assiut 71515, Egypt

4. School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China

Abstract

Based on the cable-stayed beam model, this paper studies the nonlinear coupled vibration behavior of basalt fiber-reinforced polymer (BFRP) cables on long-span cable-stayed bridges under parametric excitation. Considering the sag, damping of BFRP cables, and the coupled interactions between stayed cables and the main girder, the nonlinear coupling vibration model of the BFRP cable–beam composite structure has been established. Taking the longest cable of Sutong Bridge as a case study, the nonlinear coupled vibration behavior of BFRP cables under parametric excitation has been numerically analyzed using the finite difference method. The analysis results indicate that (1) under parametric excitation, the large amplitude nonlinear vibration of the BFRP cable will be induced with an evident “beat” phenomenon. (2) Under the same parametric excitation, the nonlinear coupling vibration response and the beta frequency of the BFRP cable were both smaller than that of the traditional steel cable. (3) The nonlinear coupling vibration response of the BFRP cable increased with an increment in excitation amplitude and a decrement in cable force. With the increase in the excitation frequency, weight per unit length, and axial stiffness, the nonlinear vibration response of the BFRP cable increased first and then decreased. Meanwhile, the damping ratio of the BFRP cable had no significant influence on the nonlinear coupling vibration.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Key Research and Development of Shandong Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Key Research & Development Project of Zhenjiang City

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3