Modelling of Cyclic Load Behaviour of Smart Composite Steel-Concrete Shear Wall Using Finite Element Analysis

Author:

Najm Hadee MohammedORCID,Ibrahim Amer M.,Sabri Mohanad MuayadORCID,Hassan AmerORCID,Morkhade Samadhan,Mashaan Nuha S.ORCID,Eldirderi Moutaz Mustafa A.,Khedher Khaled MohamedORCID

Abstract

In recent years, steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to their high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in auxiliary buildings, surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. The current study aims to investigate the seismic behaviour of composite shear walls and evaluate their performance in comparison with traditional reinforced concrete (RC) walls when subjected to cyclic loading. A three-dimensional finite element model is developed using ANSYS by emphasising constitutive material modelling and element type to represent the real physical behaviour of complex shear wall structures. The analysis escalates with parametric variation in reinforcement ratio, compressive strength of the concrete wall, layout of shear stud and yield stress of infill steel plate. The modelling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. The findings of this study showed that an up to 3.5% increase in the reinforcement ratio enhanced the ductility and energy absorption with a ratio of 37% and 38%, respectively. Moreover, increasing the concrete strength up to 55 MPa enhanced the ductility and energy absorption with ratios of 51% and 38%, respectively. Thus, this improves the contribution of concrete strength, while increasing the yield stress of steel plate (to 380 MPa) enhanced the ductility (by a ratio of 66%) compared with the reference model. The present numerical research shows that the compressive strength of the concrete wall, reinforcement ratio, layout of shear stud and yield stress of infill steel plate significantly affect ductility and energy absorption. Moreover, this offers a possibility for improving the shear wall’s capacity, which is more important.

Funder

Dr. Mohanad Muayad Sabri Sabri

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3