Experimental Study of High-Strength Concrete-Steel Plate Composite Shear Walls

Author:

Jiang DongqiORCID,Xiao CongzhenORCID,Chen Tao,Zhang YuyeORCID

Abstract

Shear walls are effective lateral load resisting elements in high-rise buildings. This paper presents an experimental study of the seismic performance of a composite shear wall system that consists of high-strength concrete walls with the embedded steel plate. Two sets of wall specimens with different aspect ratios (height/width, 1.5 and 2.7) were constructed and tested under quasi-static reversed cyclic loading, including five reinforced concrete shear walls (RCSW) and six reinforced concrete-steel plate shear walls (RCSPSW). The progression of damage, failure modes, and load-displacement responses of test specimens were studied and compared based on experimental observations. The test results indicated that high-strength (HS) RCSPSW system showed superior lateral load strength and acceptable deformation capability. The axial compressive load was found to have an indispensable effect on the ductility of both RCSW and RCSPSW, and an upper limit of axial compression ratio (0.5) is recommended for the application of HS RCSPSW in engineering practices. In addition, the design strength models were suggested for predicting the shear and flexure peak strength values of RCSPSW systems, and their applicability and reliability were verified by comparing with test results.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Seismic Behavior of Low-Aspect-Ratio Reinforced Concrete Shear Walls

2. Reinforced Concrete Design of Tall Buildings;Taranath,2009

3. National Standard of the People’s Republic of China: Technical Specification for Concrete Structures of Tall Building (JGJ 3-2010),2010

4. Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary,2014

5. Shear strength and deformation patterns of R/C walls with aspect ratio 1.0 and 1.5 designed to Eurocode 8 (EC8)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3