Use of MD Simulation for Investigating Diffusion Behaviors between Virgin Asphalt and Recycled Asphalt Mastic

Author:

Chen Shuqi1,Yang Qing1,Qiu Xin1ORCID,Liu Ke1,Xiao Shanglin1,Xu Wenyi2

Affiliation:

1. Road and Traffic Engineering Institute, College of Engineering, Zhejiang Normal University, Jinhua 321004, China

2. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

Abstract

The study aims at investigating diffusion behaviors between virgin asphalt and recycled asphalt mastic (RAM) at an atomistic scale. Firstly, a mutual diffusion model of virgin asphalt–RAM considering the actual mass ratio of filler to asphalt binder (F/A) condition was developed by molecular dynamic (MD)simulation. Secondly, the indexes of relative concentration (RC), radial distribution function (RDF) and mean square displacement (MSD) were used to analyze the molecular arrangement characteristics of polar components in the diffusion processes at different temperatures. Then, the blending efficiency of virgin asphalt–RAM was evaluated by Fick’s second law and the binding energy. The results indicate that the reliability of the RAM model was validated by thermodynamics properties. The results of RC and RDF show that the diffusion direction of virgin asphalt–RAM is not changed by the presence of mineral fillers. However, it will inhibit the occurrence of diffusion behaviors, and the aggregation of molecules in the blending zone increases due to the adsorption of mineral fillers, which would become a barrier to molecular diffusion. The development of MSD indicates that the diffusion coefficients of molecules in both virgin–aged asphalt and virgin asphalt–RAM are on the rise with the increase in temperature. Compared with the virgin–aged asphalt, the molecular migration speed in virgin asphalt–RAM is relatively slow. According to Fick’s second law and the binding energy, diffusion behaviors are dominated by the nonpolar components. The existence of mineral fillers has the greatest effect on the nonpolar components in diffusion. It is suggested that rejuvenator containing more aromatic components should be added or the temperature controlled within 433.15–443.15 K to promote blending efficiency. The research results contribute to a deeper understanding about diffusion behaviors of virgin asphalt–RAM, serving as a benchmark for further study of rejuvenation using computational experiments.

Funder

Natural Science Foundation of Zhejiang Province

Science and Technology Plan Project of Jinhua Technology Bureau

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3