Numerical Simulation of a Masonry Arch Bridge with Initial Defects Based on Cohesive Elements

Author:

Zou Jinsu12ORCID,Wang Baisheng1,Ye Lingpeng3ORCID

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

2. Center for Balance Architecture, Zhejiang University, Hangzhou 310058, China

3. The Architectural Design & Research Institute of Zhejiang University Co., Ltd., Hangzhou 310028, China

Abstract

Most of the existing masonry bridges have been in service for a significant duration, and as a result of construction limitations, these structures often exhibit intricate geometric defects. Furthermore, under prolonged loading conditions, the rheological behavior of rock can induce deformation in masonry bridges, leading to a continuously evolving stress state. Employing an idealized model for safety assessment frequently results in an overestimation of their load-bearing capacity. To accurately evaluate the load-bearing performance and remaining service life of masonry bridges, as well as to prevent safety incidents, this study employs a parametric approach to establish a two-phase numerical model of masonry bridges. In this model, cohesive elements are introduced to simulate the bonding relationship, while the distribution pattern of geometric initial defects is determined based on the theory of conditional random fields. Additionally, the rheological behavior of rock is incorporated through a custom-written Abaqus user subroutine. Building upon this foundation, the probability distribution of the load-bearing capacity of masonry bridges is reconstructed using the maximum entropy method with fractional moment constraints. The resulting outcomes are compared and validated against those obtained using the decomposition conditional correlation matrix. Finally, the effectiveness and applicability of the proposed method are demonstrated through numerical simulations and field measurements conducted on an actual bridge. The findings reveal that the method introduced in this paper adequately accounts for the stochastic nature of geometric initial defects, objectively reflects the operational performance of masonry bridges, and effectively simulates the complete failure process of such structures. Consequently, this method provides a solid basis for the safety assessment of masonry bridges.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3