Characterization of the road profile and the rotational stiffness of supports in a bridge based on axle accelerations of a crossing vehicle

Author:

Feng Kun1,Casero Miguel1,González Arturo1

Affiliation:

1. School of Civil Engineering University College Dublin Dublin Ireland

Abstract

AbstractIn an effort to find more cost‐effective and proactive ways to keep bridges in good condition, the use of instrumented vehicles has gained great interest in the last decade. Two bridge components that can wear rapidly are the bearings and the road surface. However, past research on drive‐by monitoring has placed focus mostly on detecting losses of bending stiffness in the bridge deck, while assuming ideal support conditions that may differ from real cases significantly, and ignoring the characterization of the road profile. Even further, the need for specialized vehicles equipped with high‐tech instrumentation, low speeds, or very good road profiles has been a major obstacle preventing its practical implementation. This paper investigates the use of axle accelerations from an ordinary two‐axle vehicle crossing the bridge to quantify the rotational stiffness of the supports and the height of the road irregularities while overcoming the limitations exposed above. In contrast to previous research where the response of the contact point has been derived from other vehicular locations based on complex differential equations of motion, transfer functions are employed here. The key advantage of transfer functions is their simple algebraic form that can be easily calibrated on the field. The road profile is then obtained by subtracting the displacement of the bridge under each axle from the displacement of the contact point. There is one prediction of the road profile per axle but only a unique value of rotational stiffness at each support that will yield the same prediction by both axles. The algorithm is successfully tested with a half‐car traveling at 5, 10, 15, and 20 m/s, over a 15‐m bridge beam model with ISO road classes “A,” “B,” and “C,” for boundary conditions ranging from simply supported to fixed. The solution's robustness to modeling inaccuracies and noisy data is also investigated.

Funder

Science Foundation Ireland

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3