Optimization of Tuned Liquid Damper Including Different Liquids for Lateral Displacement Control of Single and Multi-Story Structures

Author:

Ocak AylaORCID,Bekdaş GebrailORCID,Nigdeli Sinan Melih,Kim SanghunORCID,Geem Zong WooORCID

Abstract

This study focuses on tuned liquid dampers (TLDs) using liquids with different characteristics optimized with the adaptive harmony search algorithm (AHS). TLDs utilize the characteristic features of the liquid to absorb the dynamic forces entering the structure and benefit from the sloshing movement and the spring stiffness created by the liquid mass. TLDs have been optimized to investigate the effect of liquid characteristics on the control by analyzing various liquids. For optimization, the memory consideration ratio (HMCR) and fret width (FW) values were adapted from the classical harmony search (HS) algorithm parameters. The TLDs were used on three types of structure models, such as single-story, 10, and 40 stories. The contribution of the liquid characteristics to the damping performance was investigated by optimizing the minimum displacement under seismic excitation. According to the results, it was understood that the liquid density and kinematic viscosity do not affect single-story structures alone. However, two characteristic features should be evaluated together. As the structure mass increases, the viscosity and density become more prominent.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference70 articles.

1. The Dynamic Behavior of Liquids in Moving Containers;Abramson,1966

2. Liquid Sloshing Dynamics: Theory and Applications;Ibrahim,2005

3. Modelling of tuned liquid damper (TLD)

4. A non‐linear numerical model of the tuned liquid damper

5. The role of damping, mass and stiffness in the reduction of wind effects on structures

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3