Simulation of Sloped-Bed Tuned Liquid Dampers Using a Nonlinear Shallow Water Model

Author:

Khanpour Mahdiyar1,Mohammadian Abdolmajid1ORCID,Shirkhani Hamidreza12,Kianoush Reza3ORCID

Affiliation:

1. Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada

2. National Research Council Canada, 1200 Montreal Rd., Ottawa, ON K1A 0R6, Canada

3. Department of Civil Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada

Abstract

This research aims to develop an efficient and accurate model for simulating tuned liquid dampers (TLDs) with sloped beds. The model, based on nonlinear shallow water equations, is enhanced by introducing new terms tailored to each specific case. It employs the central upwind method and Minmod limiter functions for flux and interface variable assessment, ensuring both high accuracy and reasonable computational cost. While acceleration, slope, and dissipation are treated as explicit sources, an implicit scheme is utilized for dispersion discretization to enhance the model’s stability, resulting in matrix equations. Time discretization uses the fourth-order Runge–Kutta scheme for precision. The performance of the model has been evaluated using several test cases including dam-breaks on flat and inclined beds and run-up and run-down simulations over parabolic beds, which are relevant to sloshing in tanks with sloped beds. It accurately predicts phenomena such as asymmetric sloshing waves, especially in sloped beds, where pronounced waves occur. Dispersion and dissipation terms are crucial for capturing these effects and maintaining stable wave patterns. An initial perturbation method assesses the tank’s natural period and numerical diffusion. Furthermore, the model integrates with a single-degree-of-freedom (SDOF) system to create a TLD model, demonstrating enhanced damping effects with sloped beds.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3