Energy Performance Evaluation of Historical Building

Author:

Ameen ArmanORCID,Bahrami AlirezaORCID,El Tayara Khaled

Abstract

Retrofitting measures in old buildings aimed at reducing energy usage have become important procedures meant to counteract the effects of climate change and greenhouse gas emissions. The aim of this study is to evaluate energy usage, thermal comfort, and CO2 emissions of an old building by changing parameters such as building orientation, shading systems, location, low energy film application, and alternative energy supply in the form of a geothermal heat pump. When evaluating the buildings in terms of geographical location with or without applying the low energy film, the results show that the city of Gävle in Sweden requires the most heating energy, 150.3 kWh/m2∙year (B0) compared to Jakarta (L0), which requires 23.8 kWh/m2∙year. When examining the thermal comfort, cases B4 and L4 demonstrate the best results in their respective categories (B0–B4 are cases without low energy film and L0–L4 are cases with applied low energy film). The results for the CO2 emissions levels for B0–B4 and L0–L4 indicate that B4 has the highest value, 400 kg CO2 eq/year higher than B0, and L1 has the lowest value, 731 kg CO2 eq/year lower than B0. The economic feasibility study illustrates that the installation of a geothermal heat pump with at least a coefficient of performance of 4.0 leads to a shorter payback period than solely applying LEF.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3