Retrofitting Existing Buildings to Improve Energy Performance

Author:

Sharma Sunil KumarORCID,Mohapatra Swati,Sharma Rakesh ChandmalORCID,Alturjman SinemORCID,Altrjman Chadi,Mostarda LeonardoORCID,Stephan ThompsonORCID

Abstract

Energy-efficient retrofits embrace enhancement of the building envelope through climate control strategies, employment of building-integrated renewable energy technologies, and insulation for a sustainable city. Building envelope improvements with insulation is a common approach, yet decision-making plays an important role in determining the most appropriate envelope retrofit strategy. In this paper, the main objective is to evaluate different retrofit strategies (RS) through a calibrated simulation approach. Based on an energy performance audit and monitoring, an existing building is evaluated on performance levels and improvement potentials with basic energy conservation measures. The considered building is experimentally monitored for a full year, and monitoring data are used in calibrating the simulation model. The validation of the base model is done by comparing the simulation analysis with the experimental investigation, and good agreement is found. Three different retrofit strategies based on Intervention of minor (RS1), Moderate (RS2), and Major (RS3) are analyzed and juxtaposed with the base model to identify the optimal strategy of minimizing energy consumption. The result shows that total energy intensity in terms of the percentage reduction index is about 16.7% for RS1, 19.87 for RS2, and 24.12% for RS3. Hence, RS3 is considered the optimal retrofit strategy and is further simulated for a reduction in carbon dioxide (CO2) emissions and payback investigation. It was found that the annual reduction in CO2 emissions of the building was 18.56%, and the payback period for the investment was 10.6 years.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3