Affiliation:
1. Department of Construction Management, School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
Abstract
The construction industry is fraught with danger. The investigation of the causes of occupational accidents receives considerable attention. The purpose of this research is to determine the hierarchical relationship and critical combination of the fatal causes of accidents on construction sites. The framework for fatal cause attribute was established. Machine learning technologies were developed to predict the different types of accidents. Using feature importance, the hierarchical relationship of fatal causes was extracted. An iterative analysis algorithm was created to quantify the cause combinations. The F1 prediction score was 92.93%. The results revealed that combinations existed in fatal causes analysis, even if they were hierarchical. Furthermore, this study made recommendations for improving safety management and preventing occupational accidents. The findings of this study guide construction participants in providing early warning signs of fatal and unsafe factors, ultimately assisting in the prevention of fatalities.
Funder
National Natural Science Foundation of China
Ministry of Education
Beijing Municipal Government
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献