A Review of Data Mining Strategies by Data Type, with a Focus on Construction Processes and Health and Safety Management

Author:

Pireddu Antonella1,Bedini Angelico1,Lombardi Mara2ORCID,Ciribini Angelo L. C.3ORCID,Berardi Davide2ORCID

Affiliation:

1. Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), Italian National Institute for Insurance against Accidents at Work, Inail, 00144 Rome, Italy

2. Department of Chemical Engineering Materials Environment (DICMA), Sapienza-University of Rome, 00184 Rome, Italy

3. Department of Civil Engineering, Architecture, Land, Environment and Mathematics (DICATAM), Brescia University, 25121 Brescia, Italy

Abstract

Increasingly, information technology facilitates the storage and management of data useful for risk analysis and event prediction. Studies on data extraction related to occupational health and safety are increasingly available; however, due to its variability, the construction sector warrants special attention. This review is conducted under the research programs of the National Institute for Occupational Accident Insurance (Inail). Objectives: The research question focuses on identifying which data mining (DM) methods, among supervised, unsupervised, and others, are most appropriate for certain investigation objectives, types, and sources of data, as defined by the authors. Methods: Scopus and ProQuest were the main sources from which we extracted studies in the field of construction, published between 2014 and 2023. The eligibility criteria applied in the selection of studies were based on the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA). For exploratory purposes, we applied hierarchical clustering, while for in-depth analysis, we used principal component analysis (PCA) and meta-analysis. Results: The search strategy based on the PRISMA eligibility criteria provided us with 63 out of 2234 potential articles, 206 observations, 89 methodologies, 4 survey purposes, 3 data sources, 7 data types, and 3 resource types. Cluster analysis and PCA organized the information included in the paper dataset into two dimensions and labels: “supervised methods, institutional dataset, and predictive and classificatory purposes” (correlation 0.97–8.18 × 10−1; p-value 7.67 × 10−55–1.28 × 10−22) and the second, Dim2 “not-supervised methods; project, simulation, literature, text data; monitoring, decision-making processes; machinery and environment” (corr. 0.84–0.47; p-value 5.79 × 10−25–-3.59 × 10−6). We answered the research question regarding which method, among supervised, unsupervised, or other, is most suitable for application to data in the construction industry. Conclusions: The meta-analysis provided an overall estimate of the better effectiveness of supervised methods (Odds Ratio = 0.71, Confidence Interval 0.53–0.96) compared to not-supervised methods.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3