Properties and Microstructure of a Cement-Based Capillary Crystalline Waterproofing Grouting Material

Author:

Wang Mengjie1,Yang Xiaohua1ORCID,Zheng Kunlong2,Chen Rui1

Affiliation:

1. School of Highway, Chang’an University, Xi’an 710064, China

2. China State Construction Silk Road Investment Group Co., Ltd., Xi’an 710075, China

Abstract

Cement grout is traditionally used for treating water leakage distress in tunnels. However, traditional cement grout has the disadvantages of a poor anti-seepage performance, long setting time, and slow strength gain. To this end, a high-performance cement-based capillary crystalline waterproofing (CCCW) grouting material was synthesized using cement, capillary crystalline material, and several admixtures. The influences of the material proportions on the viscosity, bleeding rate, and setting time of the fresh grout, as well as the permeability coefficient of the grouted aggregate and the unconfined compression strength of the hardened grout material, were systematically studied. The mineralogy and microstructure of the CCCW grouting material were examined using X-ray diffraction, industrial computed tomography, and scanning electron microscopy. The results indicated that the capillary crystalline material PNC803 was not suitable for mixing with bentonite, sodium chloride, and triethanolamine in cementitious slurries, but it can produce excellent synergistic effects with sulfate, calcium chloride, and triisopropanolamine. An analysis of the microstructure of the CCCW grouting material showed that the PNC803 and additives can promote the hydration of cement, which yields more hydration products, sealing water passage and filling micro voids and therefore leading to enhanced waterproofing and strengthening effects. These research results could improve the applicability of CCCW material in tunnel engineering.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference46 articles.

1. Prevention and mitigation methods for water leakage in tunnels and underground structures;Gong;China J. Highw. Transp.,2021

2. Health status evaluation of highway tunnel inverted arch based on variable weight and extension cloud model;Chang;Eng. Fail. Anal.,2024

3. Application of biodegradable natural polymers for flocculated sedimentation of clay slurry;Chakrabarti;Bioresour. Technol.,2008

4. Rheological behavior of muscovite clay slurries: Effect of water quality and solution speciation;Nosrati;Int. J. Miner. Process.,2012

5. Clay dosage and water/cement ratio of clay-cement grout for optimal engineering performance;Zhang;Appl. Clay Sci.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3