Experimental Study on Aeroelastic Instability of Spherical Inflatable Membrane Structures with a Large Rise–Span Ratio

Author:

Chen Zhaoqing,Su Yong,Wang Junchao,Su NingORCID,Tang Lixiang

Abstract

Spherical inflatable membrane structures are extremely prone to suffer aeroelastic instability under strong winds, which requires detailed investigation. In this paper, based on the digital image correlation technology (DIC), the displacement and strain response characteristics under wind loads are investigated. Furthermore, the aeroelastic instability characteristics and the criteria for determining the occurrence of this phenomenon are defined. The results show that the top, windward, and side parts of the structure deform upward, inward, and outward. The extreme value of the total displacement occurs at approximately 1/2 of the windward region. Maximum principal strains occur at the windward and leeward centers together with the top region. After the wind speed exceeds the critical value (the dimensionless critical wind speed is observed at 1.37), the structure undergoes a sudden change of dominant vibration mode, the damping ratio decreases dramatically and reaches nearly zero. It can be concluded that the aeroelastic instability of the spherical inflatable membrane structure is caused by vortex-induced resonance and is characterized by a sudden increase in deformation and amplitude, a sudden change of the dominant vibration mode, and a rapid decay of the damping ratio. The Reynolds number after reaching the instability critical wind speed is Re > 3.1 × 105.

Funder

Key R & D plan of Jilin Provincial Department of science and technology

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3