Modeling and Optimization of the Air-Supported Membrane Coal Shed Structure in Ports

Author:

Dong Mingwang1,Zhang Huimin1,Tang Daogui12ORCID,Guo Xiaohai1,Gu Yong1ORCID,Qiao Lei1,Guerrero Josep M.345ORCID

Affiliation:

1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

2. Ningbo Zhoushan Port Group Co., Ltd., Ningbo 315100, China

3. Center for Research on Microgrids (CROM), Department of Electronic Engineering, Technical University of Catalonia, 08019 Barcelona, Spain

4. Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain

5. Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg, Denmark

Abstract

The air-supported membrane coal shed is widely used in bulk cargo terminals. It not only effectively protects goods from adverse weather conditions but also helps reduce coal dust and harmful gas emissions, promoting the green and sustainable development of ports. However, in practical engineering, the design parameters of the coal shed are often based on experience, making it difficult to accurately assess the quality of the structural design. The flexibility of the membrane material also makes the structure susceptible to deformation or tearing. This paper mainly focuses on modeling and solving the optimization design issues of air-supported membrane coal shed structures. According to the evaluation criteria for the form of air-supported membrane coal sheds, a multi-objective structural optimization model is established to minimize the maximum stress on the membrane surface, ensure uniform stress distribution, maximize structural stiffness, and minimize costs. The study utilizes a combined optimization approach using ANSYS 19.0 and MATLAB 2016a, incorporating an improved NSGA-II algorithm program developed in MATLAB into ANSYS for structural form analysis and load calculation. The research results indicate that the optimal solution reduces the maximum stress on the loaded membrane surface by 5.36%, shortens the maximum displacement by 30.3%, and saves on economic costs by 9.85%. Compared to traditional empirical design methods, the joint use of MATLAB and ANSYS for optimization design can provide more superior solutions, helping ports to achieve environmental protection and economic efficiency goals.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3