The Necessity for Multi-Spectral Simulations of the Indoor Non-Visual Luminous Environment: A Simplified Annual Approach

Author:

Potočnik Jaka1,Košir Mitja1ORCID

Affiliation:

1. Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000 Ljubljana, Slovenia

Abstract

The difference between the functioning of the human non-visual and photopic systems has elicited the need for complex in situ measurements or time-consuming multi-spectral simulations to accurately predict the non-visual luminous content of the indoor environment. As such methodologies are time-consuming, the aim of the present study was to determine whether such complex methodologies are needed. The issue was studied through simulations of four cardinally oriented identical offices located in Ljubljana, Slovenia. Each was studied using orange, grey and blue walls. Diurnal luminous conditions were studied under clear, hazy and overcast skies on December, March and June 21st. The non-visual content was evaluated using novel metrics, the Autonomy of Circadian Potential and Circadian Autonomy, which assess temporal circadian luminous content. Diurnal results were used to construct climate-based spectral months to evaluate the monthly non-visual potential of the studied offices. Furthermore, simulations addressed the question of whether the requirements of the non-visual system might contradict the visual comfort of indoor environments. The results show that compliance with non-visual requirements for indoor spaces with spectrally neutral surfaces or those in shades of blue could be assessed using photopic methodologies. However, this is not true for spaces characterised by orange and red materials.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3