Durability Enhancement of Concrete with Recycled Concrete Aggregate: The Role of Nano-ZnO

Author:

Al-Kheetan Mazen J.1ORCID,Jweihan Yazeed S.1ORCID,Rabi Musab2ORCID,Ghaffar Seyed Hamidreza34

Affiliation:

1. Civil and Environmental Engineering Department, College of Engineering, Mutah University, P.O. Box 7, Mutah 61710, Jordan

2. Department of Civil Engineering, Jerash University, P.O. Box 311, Jerash 26150, Jordan

3. Department of Engineering, University of Birmingham, Dubai International Academic City, Dubai 341799, United Arab Emirates

4. Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan

Abstract

The replacement of virgin aggregate with recycled concrete aggregate (RCA) in concrete mixtures offers an eco-strategy to mitigate the environmental limitations linked with traditional recycling techniques of RCA. However, the inferior properties of RCA, in contrast to virgin aggregate, present an obstacle to efficiently proceeding with this approach. Therefore, the aim of this study is to enhance the characteristics of concrete that contains RCA using nano-ZnO particles. Virgin aggregate was replaced with RCA in 30 wt.% and 50 wt.% ratios, followed by the addition of 0.5 wt.% nano-ZnO. The performance of concrete mixtures was evaluated in terms of their physical, mechanical, and durability properties. The addition of nano-ZnO particles to concrete with RCA resulted in refining its pore structure and reducing its water absorption, where the impermeability of concrete with 30 wt.% and 50 wt.% treated RCA decreased by 14.5% and 18%, respectively. Moreover, nano-ZnO treatment increased the compressive strength of mixtures with 30 wt.% and 50 wt.% RCA by 2.8% and 4%, respectively. All mixtures underwent a reduction in their 28-day compressive strength after exposure to a 5% sulphuric acid solution, where concrete with 30 wt.% and 50 wt.% RCA showed 20.2% and 22.8% strength loss, respectively. However, there was a 17.6% and 19.6% drop in the compressive strength of concrete with 30 wt.% and 50 wt.% RCA and treated with nano-ZnO.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3