Study on the Effect of Interfacial Modification on the Properties of Super Standard Mica Sand Cement-Based Materials

Author:

Liu Huanqiang1,Yang Xueqing2,Jiang Linhua3,Li Keliang1,Wang Limei1,Jin Weizhun1

Affiliation:

1. School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

2. School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

3. College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China

Abstract

Mica is a harmful substance in sand and occurs frequently. The application of super standard mica sand is a difficult problem in large-scale engineering. In this work, the effects of an interface modifier, mineral admixture, and a curing system on the properties of cement-based materials with super standard mica sand were studied. The strength of cement-based materials linearly decreases with the mica content in sand. When the mica content in sand exceeds 6%, the compressive strength of mortar and concrete at 28 d decreases by more than 22.3% and 33.5%, respectively. By adding the silane coupling agent (SCA) of 50% mica mass and curing in natural conditions, the compressive strength of mortar increases by 10.9%. The cement-based materials with the SCA are more suitable for curing in natural conditions, and the performance of the SCA will not be affected by adding appropriate amounts of mineral admixture. The drying shrinkage strain of the concrete, with the sand containing high mica content modified by SCA, is reduced by 10.5%, and the diffusion of chloride ions in concrete is reduced. The XRD results show that the addition of the interfacial agent does not change the hydration products. The MIP and SEM results show that the SCA can form a bridge structure between the hydration products and the mica, improve the bonding strength of the interface zone, and reduce the number of harmful pores.

Funder

Science and Technology Research Project of Henan Province

Doctoral Research Foundation of North China University of Water Resources and Electric Power

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3