Harnessing Path Optimization to Enhance the Strength of Three-Dimensional (3D) Printed Concrete

Author:

Jiang Xiongzhi1,Li Yujia1,Yang Zhe1,Li Yangbo1ORCID,Xiong Bobo1

Affiliation:

1. College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China

Abstract

The path-dependent strength of three-dimensional printed concrete (3DPC) hinders further engineering application. Printing path optimization is a feasible solution to improve the strength of 3DPC. Here, the mix ratio of 3DPC was studied to print standard concrete specimens with different printing paths using our customized concrete 3D printer, which features fully sealed extrusion and ultrathin nozzles. These paths include crosswise, vertical, arched, and diagonal patterns. Their flexural and compressive strengths were tested. In order to verify the tested results and expose the mechanism of strength enhancement, digital image correlation (DIC) was used to capture the dynamic gradual fracture in the flexural tests. Also, the meso- and microstructures of the 3D-printed concrete specimens were pictured. The results reported here show that arched-path concrete has 30% more flexural strength than others because it makes better use of filament-wise strength. The findings here provide a pathway to improve the strength of 3D-printed concrete by path optimization, boosting 3DPC’s extensive application in civil engineering.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3