Three-Dimensional Printable Concrete by an Ultra-Thin Nozzle and Fully Sealed Extrusion

Author:

Shen Jing1,Li Yujia2,Zhang Xiaoman1,Li Yangbo2ORCID,Huang Chaohui3,Luo Wei3

Affiliation:

1. School of Transportation Science and Engineering, Beihang University, Beijing 100191, China

2. College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China

3. Haining Yancang River Embankment Management Office, Haining 314400, China

Abstract

Due to the molding-free property and dry shrinkage of extrusion-based three-dimensional printable concrete (3DPC), the precision issues of 3DPC have not been solved effectively. One of the viable solutions for 3DPC precision improvement is to print using ultra-thin filaments. The challenges of ultra-thin-filament printing are extrudability, flowability, and fast solidification. To overcome these challenges and enhance precision, a customized 3D concrete printer with an ultra-thin diameter nozzle (6 mm) and fully sealed extrusion system was developed, and the mix design of ultra-thin-filament 3DPC (UTF-3DPC) was studied, including ingredients such as fly ash (FA), silica fume (SF), ordinary Portland cement (OPC), sodium dodecyl sulfate and cellulose (SDSC), water reducer, water, and sand. The function of UTF-3DPCs flowability and fast solidification with the proportion of water and SDSC was explored to obtain the optimal mix design. The standard compressive and flexural strengths of UTF-3DPC specimens were compared with the mold-cast vibrated and the mold-cast non-vibrated concrete. Their meso-scale and micro-scale structures were analyzed to expose the strength mechanism, according to the scanning electron microscope (SEM) images. A suitable mix design of UTF-3DPC was obtained and UTF-3DPC strength reached 80% of standard mold-cast concrete. The findings reported here provide a pathway to improve the precision of 3DPC and extend the application of 3D printing technology in engineering.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3